Evaluation strategies |
---|
|
In computer science, an evaluation strategy is a set of (usually deterministic) rules for evaluating expressions in a programming language. Emphasis is typically placed on functions or operators: an evaluation strategy defines when and in what order the arguments to a function are evaluated, when they are substituted into the function, and what form that substitution takes. The lambda calculus, a formal system for the study of functions, has often been used to model evaluation strategies, where they are usually called reduction strategies. Evaluation strategies divide into two basic groups, strict and non-strict, based on how arguments to a function are handled. A language may combine several evaluation strategies; for example, C++ combines call-by-value with call-by-reference. Most languages that are predominantly strict use some form of non-strict evaluation for boolean expressions and if-statements.
Contents |
In strict evaluation, the arguments to a function are always evaluated completely before the function is applied.
Under Church encoding, eager evaluation of operators maps to strict evaluation of functions; for this reason, strict evaluation is sometimes called "eager". Most existing programming languages use strict evaluation for functions.
Applicative order (or rightmost innermost) evaluation refers to an evaluation strategy in which the arguments of a function are evaluated from left to right in a post-order traversal of reducible expressions (redexes). Unlike call-by-value, applicative order evaluation reduces terms within a function body as much as possible before the function is applied.
Call-by-value evaluation (also referred to as pass-by-value) is the most common evaluation strategy, used in languages as different as C and Scheme. In call-by-value, the argument expression is evaluated, and the resulting value is bound to the corresponding variable in the function (frequently by copying the value into a new memory region). If the function or procedure is able to assign values to its parameters, only its local copy is assigned — that is, anything passed into a function call is unchanged in the caller's scope when the function returns.
Call-by-value is not a single evaluation strategy, but rather the family of evaluation strategies in which a function's argument is evaluated before being passed to the function. While many programming languages (such as Eiffel and Java) that use call-by-value evaluate function arguments left-to-right, some evaluate functions and their arguments right-to-left, and others (such as Scheme, OCaml and C) leave the order unspecified (though they generally require implementations to be consistent).
In some cases, the term "call-by-value" is problematic, as the value which is passed is not the value of the variable as understood by the ordinary meaning of value, but an implementation-specific reference to the value. The description "call-by-value where the value is a reference" is common (but should not be understood as being call-by-reference); another term is call-by-sharing. Thus the behaviour of call-by-value Java or Visual Basic and call-by-value C or Pascal are significantly different: in C or Pascal, calling a function with a large structure as an argument will cause the entire structure to be copied, potentially causing serious performance degradation, and mutations to the structure are invisible to the caller. However, in Java or Visual Basic only the reference to the structure is copied, which is fast, and mutations to the structure are visible to the caller.
In call-by-reference evaluation (also referred to as pass-by-reference), a function receives an implicit reference to a variable used as argument, rather than a copy of its value. This typically means that the function can modify (i.e. assign to) the variable used as argument- something that will be seen by its caller. Call-by-reference therefore has the advantage of greater time- and space-efficiency when the argument is a large datatype (since arguments do not need to be copied), as well as the potential for greater communication between a function and its caller (since the function can return information using its by-reference arguments), but the disadvantage that a function must often take special steps to "protect" values it wishes to pass to other functions.
Many languages support call-by-reference in some form or another, but comparatively few use it as a default; Perl and Visual Basic are two that do, though Visual Basic also offers a special syntax for call-by-value parameters. A few languages, such as C++, PHP, and REALbasic, default to call-by-value, but offer special syntax for call-by-reference parameters. C++ additionally offers call-by-reference-to-const. In purely functional languages there is typically no semantic difference between the two strategies (since their data structures are immutable, so there is no possibility for a function to modify any of its arguments), so they are typically described as call-by-value even though implementations frequently use call-by-reference internally for the efficiency benefits.
Even among languages that don't exactly support call-by-reference, many, including C and ML, support explicit references (objects that refer to other objects), such as pointers (objects representing the memory addresses of other objects), and these can be used to effect or simulate call-by-reference (but with the complication that a function's caller must explicitly generate the reference to supply as an argument).
Example that demonstrates call-by-reference in E:
def modify(var p, &q) { p := 27 # passed by value - only the local parameter is modified q := 27 # passed by reference - variable used in call is modified }
? var a := 1 # value: 1 ? var b := 2 # value: 2 ? modify(a,&b) ? a # value: 1 ? b # value: 27
Example that simulates call-by-reference in C:
void Modify(int p, int * q, int * o) { p = 27; // passed by value - only the local parameter is modified *q = 27; // passed by value or reference, check call site to determine which *o = 27; // passed by value or reference, check call site to determine which } int main() { int a = 1; int b = 1; int x = 1; int * c = &x; Modify(a, &b, c); // a is passed by value, b is passed by reference by creating a pointer, // c is a pointer passed by value // b and x are changed return(0); }
Also known as "call by object" or "call by object-sharing" is an evaluation strategy first named by Barbara Liskov et al. for the language CLU in 1974.[1] It is used by languages such as Python,[2] Iota, Java (for object references),[3] Ruby, Scheme, OCaml, AppleScript, and many other languages. However, the term "call by sharing" is not in common use; the terminology is inconsistent across different sources. For example, in the Java community, they say that Java is pass-by-value, whereas in the Ruby community, they say that Ruby is pass-by-reference, even though the two languages exhibit the same semantics. Call-by-sharing implies that values in the language are based on objects rather than primitive types.
The semantics of call-by-sharing differ from call-by-reference in that assignments to function arguments within the function aren't visible to the caller (unlike by-reference semantics) , so e.g. if a variable was passed, it is not possible to simulate an assignment on that variable in the caller's scope. However since the function has access to the same object as the caller (no copy is made), mutations to those objects, if the objects are mutable, within the function are visible to the caller, which may appear to differ from call-by-value semantics. For immutable objects, there is no real difference between call-by-sharing and call-by-value, except for the object identity.
Although this term has widespread usage in the Python community, identical semantics in other languages such as Java and Visual Basic are often described as call-by-value, where the value is implied to be a reference to the object.
Call-by-copy-restore, copy-in copy-out, call-by-value-result or call-by-value-return (as termed in the Fortran community) is a special case of call-by-reference where the provided reference is unique to the caller. This variant has gained attention in multiprocessing contexts: if a parameter to a function call is a reference that might be accessible by another thread of execution, its contents may be copied to a new reference that is not; when the function call returns, the updated contents of this new reference are copied back to the original reference ("restored").
The semantics of call-by-copy-restore also differ from those of call-by-reference where two or more function arguments alias one another; that is, point to the same variable in the caller's environment. Under call-by-reference, writing to one will affect the other; call-by-copy-restore avoids this by giving the function distinct copies, but leaves the result in the caller's environment undefined depending on which of the aliased arguments is copied back first - will the copies be made in left-to-right order both on entry and on return?
When the reference is passed to the callee uninitialized, this evaluation strategy may be called call-by-result.
In partial evaluation, evaluation may continue into the body of a function that has not been applied. Any sub-expressions that do not contain unbound variables are evaluated, and function applications whose argument values are known may be reduced. In the presence of side-effects, complete partial evaluation may produce unintended results; for this reason, systems that support partial evaluation tend to do so only for "pure" expressions (expressions without side-effects) within functions.
In non-strict evaluation, arguments to a function are not evaluated unless they are actually used in the evaluation of the function body.
Under Church encoding, lazy evaluation of operators maps to non-strict evaluation of functions; for this reason, non-strict evaluation is often referred to as "lazy". Boolean expressions in many languages use a form of non-strict evaluation called short-circuit evaluation, where evaluation returns as soon as it can be determined that an unambiguous Boolean will result — for example, in a disjunctive expression where true is encountered, or in a conjunctive expression where false is encountered, and so forth. Conditional expressions also usually use lazy evaluation, where evaluation returns as soon as an unambiguous branch will result.
Normal-order (or leftmost outermost) evaluation is the evaluation strategy where the outermost redex is always reduced, applying functions before evaluating function arguments.
In contrast, a call-by-name strategy does not evaluate inside the body of an unapplied function.
In call-by-name evaluation, the arguments to a function are not evaluated before the function is called — rather, they are substituted directly into the function body (using capture-avoiding substitution) and then left to be evaluated whenever they appear in the function. If an argument is not used in the function body, the argument is never evaluated; if it is used several times, it is re-evaluated each time it appears. (See Jensen's Device.)
Call-by-name evaluation is occasionally preferable over call-by-value evaluation. If a function's argument is not used in the function, call-by-name will save time by not evaluating the argument, whereas call-by-value will evaluate it regardless. If the argument is a non-terminating computation, the advantage is enormous. However, when the function argument is used, call-by-name is often slower, requiring a mechanism such as a thunk.
.NET languages can simulate call-by-name using delegates or Expression<T> parameters. The latter results in an abstract syntax tree being given to the function.
Call-by-need is a memoized version of call-by-name where, if the function argument is evaluated, that value is stored for subsequent uses. In a "pure" (effect-free) setting, this produces the same results as call-by-name; when the function argument is used two or more times, call-by-need is almost always faster.
Because evaluation of expressions may happen arbitrarily far into a computation, languages using call-by-need generally do not support computational effects (such as mutation) except through the use of monads and uniqueness types. This eliminates any unexpected behavior from variables whose values change prior to their delayed evaluation.
Lazy evaluation is the most commonly used implementation strategy for call-by-need semantics, but variations exist — for instance optimistic evaluation.
Haskell is the most well-known language that uses call-by-need evaluation. R also uses a form of call-by-need. .NET languages can simulate call-by-need using the type Lazy<T>
.
Call-by-macro-expansion is similar to call-by-name, but uses textual substitution rather than capture-avoiding substitution. With uncautious use, macro substitution may result in variable capture and lead to undesired behavior. Hygienic macros avoid this problem by checking for and replacing shadowed variables that are not parameters.
Under full β-reduction, any function application may be reduced (substituting the function's argument into the function using capture-avoiding substitution) at any time. This may be done even within the body of an unapplied function.
Call-by-future (or parallel call-by-name) is like call-by-need, except that the function's argument may be evaluated in parallel with the function body (rather than only if used). The two threads of execution synchronize when the argument is needed in the evaluation of the function body; if the argument is never used, the argument thread may be killed.
Optimistic evaluation is another variant of call-by-need in which the function's argument is partially evaluated for some amount of time (which may be adjusted at runtime), after which evaluation is aborted and the function is applied using call-by-need. This approach avoids some of the runtime expense of call-by-need, while still retaining the desired termination characteristics.